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The conductance of photons in two-dimensional disordered photonic crystals is calculated using an exact
multipole–plane wave method that includes all multiple scattering processes. Conductance fluctuations, the
universal nature of which has been established for electrons in the diffusive regime, are studied for photons, in
both principal polarizations and for varying disorder. Our simulations show that universal conductance fluc-
tuations can be observed inHi sTEd polarization for weak and intermediate disorder while, forEi sTMd
polarization, we show that the conductance variance is essentially independent of sample size but strongly
dependent on disorder. The probability distribution of the conductance is also calculated in the diffusive and
localized regimes, and also at their transition, for which the distributions for both polarizations are seen to be
very similar.
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I. INTRODUCTION

The discovery of universal conductance fluctuations
sUCF’sd of electronsf1g, in which the variance of the con-
ductanceg does not depend on the size or the degree of
disorder of the mesoscopic conductors, has led to consider-
able researchf2g in order to understand the nature of such
anomalously large fluctuations. The scaling theory of Ander-
son localization assumes that the conductanceg is deter-
mined by its behavior for a system of a given size, with the
conductance for systems of any other size being obtained
through a scaling functionf3g. Since scaling theory is based
on the scaling properties of the averaged conductancekgl,
the discovery of UCF’s initiated a wide ranging discussion
about the validity of scaling theory itself. Indeed, it has been
suggested that the scaling theory needs to be reformulated in
terms of conductance distributionspsgd f4g. At this time,
however, no such theory exists.

The conductance distribution for the electronic case was
calculated numericallyf5,6g for both insulating and metallic
regimes, and also at the mobility edgef7,8g. Subsequently,
nonanalytic behavior ofpsgd was reported at the crossover
point skgl<1d f9g for systems without time reversal symme-
try. Despite substantial research, however, the characteriza-
tion of the conductance distribution remains incomplete.

Originally developed to describe the transport properties
of electrons in disordered wires, the concept of conductance
can also be applied to photonsf10g. Calculations ofpsgd
have been undertaken using a modal approach for surface
corrugated waveguidesf11,12g while the distribution of the
total transmittance has been investigated in the diffusive ap-
proximationf13g, using random matrix theoryf14g, and ex-
perimentallyf15g. In the diffusive regimeskgl@1d f13g, the
distribution of the total transmittance is approximately
Gaussian, while in the strong scattering regime, the theory
f13,14g can be modified to give good agreement with experi-
ment f16g.

Diagrammatic techniquesf1,10g have provided essential
insight into the contribution of different terms of the inten-
sity correlation function for weak disorder. However, the ap-
plicability of such expansions to strong disorder is not clear.
For this reason, a nonperturbative rigorous method of calcu-
lation that takes into account all scattering events is needed.
To date, however, none of the models for conductance cal-
culationssfor dimensionsdù2d with bulk defects takes into
account all multiple scattering events for photons, and nor do
existing models incorporate polarization dependence. It is
the purpose of this paper to address these deficiencies and to
present calculations for conductance fluctuations and the as-
sociated probability distributions based on an analytically
rigorous method that takes into account all scattering events.
While the modeling of noninteracting photons differs from
that of electrons, most of the electronic models neglect
electron-electron interactions. Accordingly, the results ob-
tained for photons may also be relevant to electrons.

We investigate the conductance fluctuations of photons
and their distribution for two-dimensional disordered photo-
nic crystals consisting of high index cylinders arranged in air
in a doubly periodic fashion and with their axes parallel to
each other. We study their behavior for both principal
polarizations—when the electric fieldsEid or the magnetic
field sHid is aligned with the cylinder axes. Our calculations
are based on the exact method of multipole expansions and
rigorously include all scattering events. They combine both a
microscopic approachf1g in which the multiply scattered
field is calculated exactly for single layers, and a macro-
scopic approachf17g in which these layers are stacked using
exact recurrence relations. We introduce disorder through
randomization of the cylinder refractive indices. We then cal-
culate the conductance of the bulk, disordered photonic crys-
tal, investigating the effects of disorder and sample size on
the conductance, its fluctuations, and its distribution in the
diffusive regimeskgl@1d, in the localized regimeskgl!1d,
and at the transition regionskgl<1d.
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II. COMPUTATIONAL METHOD

We consider a two-dimensional, disordered photonic crys-
tal, each layer of which is a cylinder diffraction grating with
a supercell periodically replicated in thex directionssee Fig.
1d. The supercell of lengthD comprises a set ofNc infinitely
long cylinders of radiiaj and refractive indicesnj, placed in
air with centers located atx=cj. The properties of each grat-
ing layer are then computed rigorously using a multipole
method from which plane wave scattering matrices that char-
acterize the action and interaction of each grating layer are
calculated f18g. The fields around each cylinder are ex-
pressed in terms of multipole expansions, and we include
sufficient terms to have good accuracysone part in 105, or
better, for energy calculationsd in the solution of the scatter-
ing problem for a given grating layer. The quasiperiodic re-
lationship between the fields for cylinders in one period cell
and those in other cells is ensured using lattice sums, calcu-
lated to high accuracyf18g.

The scattering action of an individual grating is param-
etrized by its periodD, and the wavelengthl=2p /k sin free
spaced and angle of incidenceu0 of an incident plane wave
field. The diffraction grating equation then defines a se-
quence of channelsp, commonly referred to as diffraction
orders, the propagation directionssupd of which are given by
sinup=ap/k whereap=k sinu0+2pp/D=k sinup. The cor-
responding direction cosine terms are given by cosup

=xp/k where xp=Îk2−ap
2 with Resxpd+Imsxpd.0. Thus

there are a finite number of propagating channels for which
Im xp=0 and an infinite number of evanescent channels for
which Imxp.0. In the general scattering problem that we
consider, each of the grating orders can represent both an
input channel and an output channel. The action of the grat-
ing sld can be characterized by reflectionsr ld and transmis-
sion stld scattering matrices, the elements of which arerpq

sld

and tpq
sld. In this nomenclature, the termtpq

sld refers to the field
amplitude transmitted into an output channelp swith direc-
tion sineap/kd from a unit amplitude input in channelq. For
simplicity, we exploit the treatment in Ref.f18g which nor-
malizes all field amplitudes so that the energy fluxes carried

by the propagating diffracted orders can be computed from
the square magnitude of the matrix elements, e.g.,utpq

sldu2. We
assume, for these calculations, that each grating layer is up-
down symmetric and thus its action, for incidence from ei-
ther above or below, can be characterized by just the two
matricesr l and tl. Finally, the scattering matrices of the in-
dividual grating layers are then coupled using recurrence re-
lations to yield the transmissionsTd and reflectionsRd scat-
tering matrices for a slab ofNL layersf18g. Accordingly, the
total transmitted flux through the stack, due to a unit ampli-
tude plane wave field incident in channelq, can be calculated
from gq=opPVp

uTpqu2, with the summation taken over the set
of all propagating channelsVp.

The dimensionless conductance of the sample is given by
the generalized two-terminal Landauer formulaf19g for mul-
tichannel propagation by summing the aggregate transmit-
tancegq over each of the possible propagating incident chan-
nelsq. That is,

g = o
qPVq

gq = o
p,qPVp

uTpqu2 = TrTT † = TrT†T , s1d

in which Tr denotes the matrix trace, summed over only the
propagating channelssi.e., orders withxp reald. The matrices
R andT are infinite in dimension and must be truncated in
any numerical implementation, with the truncation order de-
termined by various convergence studies. We retain plane
wave ordersf−Nt ,Ntg, ensuring that this set includes all
propagating channels, and as many evanescent channels as
are required for convergence to be achieved. We chooseNt to
be sufficiently large in order to give five significant figures of
accuracy, or better, for the elements of the reflection and
transmission matrices. The conductance is actually computed
by summing the square magnitudesuTpqu2 associated with all
propagating input and output channels as in Eq.s1d.

Equations1d, the two-terminal Landauer formula for elec-
tronic conductance, is derived assuming that the same leads
are used to drive the current and to carry out the measure-
ments. There is also a four-terminal form of the Landauer
formula f20g, in which separate leads are used for the input
and output measurements. In the case of photon conduc-
tance, the corresponding leads or terminals would be repre-
sented, respectively, by the light source and the detector that
collects the total transmitted energy. In order to calculate the
photon conductance one needs to measure the full transmit-
tance for each incident “energetic” anglesor channeld and
then sumsor integrated these transmittances over every pos-
sible incident channel. This experimental configuration
would correspond to the two-terminal measurements in the
electronic case. Here, we are concerned with a disordered
crystal for which a physical experiment requires an extended
but finite sample. The full simulation of this, however, is
beyond the capacity of current computers and so the model-
ing is usually undertaken for a truncated structure with peri-
odic boundary conditions, modeled using a supercell. The
structure that we model is thus a diffraction grating with a
sufficiently large period to allow the diffraction orders to
approximate the continuum of directions along which the
scattering field is distributed.

FIG. 1. Diffraction geometry displaying a supercell of a random
stack upon which is incident a single plane wave, giving rise to
reflectedR and diffractedT plane wave orders.
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While any of the parameterscj, aj, andnj can be random-
ized, the results here are for random refractive indicesnj,
uniformly distributed in the intervalfn̄−Q,n̄+Qg, whereQ
is the strength of the disorder. In this calculation we take
Nc=21. The calculations are undertaken with the family of
plane waves associated with a normal incidence configura-
tion su0=0d, with either the electric field aligned with the
cylinder axessEi or TM polarizedd or the magnetic field
aligned with the cylinder axessHi or TE polarizedd.
Throughout, we model a square lattice with lattice constant
d, and cylinders of fixed normalized radiusal /d=0.3 and
choosen̄=3. The wavelength isl=2.21d, located in the
passband between the first two gaps of the associated regular
photonic crystal. There are 19 propagating orders for these
parameters and we takeNt=50. Unless otherwise stated, av-
erages were calculated over 4900 realizations, sufficient to
yield ensemble means stable to approximately two signifi-
cant figures.

We begin by demonstrating the importance of including
sufficient evanescent plane wave terms in the field expan-
sions in order to ensure a well converged solution. In the
inset of Fig. 2 we plot the transmission of a stack withNL
=41 identical layers withNc=21 identical cylinders per unit
cell and Nt=50, versus wavelengthssolid lined. With Nc
=21, the calculation includes some 101s=2Nt+1d plane
waves, only 19 si.e., pPVp=h−9, . . . ,9jd of which are
propagatingsi.e., Imxp=0d, with the remainder evanescent
si.e., Imxp.0d. The dashed line repeats the calculation, but
this time excluding all evanescent terms and including only
the 19 propagating waves. The clear difference between the
calculations demonstrates the importance of including suffi-
ciently many evanescent terms in the calculation to ensure a
well converged result. In the main part of Fig. 2 we show the
conductance as a function of stack lengthNL for a single
realization with the inclusion of sufficient evanescent terms
to ensure convergencessolid lined, and without evanescent
order termssdashed lined. From this, it is clear that the eva-

nescent field is important in accurately characterizing the
conductance. Note that in the localized regimesg&1d, the
inclusion of evanescent plane wave terms is vital for the
accurate characterization of the transport.

III. RESULTS

A. Average of conductance and its fluctuations

We now turn to the study of the average conductancekgl
and its fluctuations and note that for electrons, in the case of
weak disorder, the variance of the conductance

s2 = kg2l − kgl2 < const, s2d

which is independent of both the degree of disorder and the
size of the sample—the universal conductance fluctuations
f1g. We begin by investigating this phenomenon for photons
in the transition from weak to strong disorder for both polar-
izations.

First, in Fig. 3, we show the dependence of the average
conductancekgl on the number of layersNL for weak, mod-
erate, and strong disorderQ in the case ofEi polarization.
The maximum stack length isNL=81 and thus, for this
length andNc=21, there are 1701 cylinders in each sample.
Three wave propagation regimes, which are more prominent
for strong disordersdotted line in Fig. 3d, are apparent. The
regions where the regimes occur depend on the degree of the
disorder Q. The diffusive skgl.1d and transition regimes
skgl<1d occur, respectively, forNL&10 and 10&NL&20
layers, while for longer stackssNL*20d the linear behavior
simplying exponential decay of thekgld points to the onset of
Anderson localization. For strong disordersQ=1.5d, the tran-
sition to Anderson localization requires fewer layers than for
weak disorder. According to the Thouless criterionf21g, the
onset of localization occurs whenkgl<1, while for kgl.1,
waves are delocalized. In Fig. 3, we observe transitions to
the linear regimesi.e., localizationd commencing atkgl

FIG. 2. Conductanceg versus the number of
layersNL for a single realization andQ=0.4, l
=2.21d, and Ei polarization. Solid line, evanes-
cent coupling includedsNt=50d; dashed line,
only propagating orders includedsNt=9d. Inset:
transmittance versus wavelength for normal inci-
dence on the stack with 41 identical layers,Q
=0. The solid line is forNc=21 cylinders per unit
cell with the inclusion of the evanescent waves,
Nt=50, while the dashed line is the same calcu-
lation without the evanescent field,Nt=9.
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<1.5,0.4,0.3, forQ=0.2,0.4,1.5 respectively—results that
are not inconsistent with the Thouless criterion.

Figure 4 shows the variancess2d of the conductance as a
function of the number of layers. For weak disordersQ
=0.2d, s2 depends only weakly on the number of layers for
NLù30 stop curved, while for stack lengths 60øNLø70 the
variance is constant to within 2%, with localization appear-
ing for stacks exceedingNL<75. For stronger disorder, the
onset of localization, in which the variance decreases with
stack length, occurs earliersi.e., for shorter stack lengthsd—
results that are similar to those observed in the electronic
casef22g. In Fig. 5 we see that the variances2 depends
strongly on the disorderQ, with approximately constant con-
ductance fluctuations being observed only in a narrow range
of disorder, for 0.15,Q,0.2 andNL=15 stop curved, while
for NL=40 the variance of the conductance decreases mono-
tonically for Q.0.1 sbottom curved.

Figure 6sad is similar to Fig. 3, but this time forHi polar-
ization. Small oscillations inkgl, with the number of layers
NL, are now apparent. To determine their origin, we show in

the inset of Fig. 6sad the result of a convergence study, show-
ing the averagekgl versus the number of realizations. Thus
kgl is well converged, with the results accurate to two sig-
nificant figures for 4000 or more realizations. To deduce the
physical origin of these oscillations, we considered the varia-
tion of kgl with stack lengthsNLd for both an ordered stack
si.e., Q=0d and a weakly disordered stacksQ=0.2d, shown,
respectively, as the upper and lower curves of Fig. 6sbd.
There is a clear correspondence between the maxima and
minima of these curves and we thus conclude that the oscil-
lations of kgl in Fig. 6sad for weak disorder are remnants of
Fabry-Pérot resonances associated with reflections from the
front and back interfaces of the sample.

We also comparekgl for ordered and very weakly disor-
dered stackssQ=0.05d for Ei polarization and observed the
same resonances. The fact that oscillatory behavior is evident
only for very weakly disordered stacks forEi polarization
suggests thatkgl is less sensitive to disorder forHi polariza-
tion than for Ei polarization. This may be interpreted in
terms of the stronger scattering by dielectric objects in air
that is observed forEi polarization than forHi polarization
f23g and which is related to the absence of a full band gap in
Hi polarization for a photonic crystal composed of dielectric
inclusions.

The transition to the linearslocalizationd regime of Fig.
6sad for Hi polarization for strong disordersi.e., Q=1.5d oc-
curs for stack lengthsNL*50 scorresponding tokgl&0.3d.

FIG. 3. AverageEi polarization conductancekgl versus size of
the clusterNL for different degrees of disorder:Q=0.2 ssolid lined,
0.4 sdashed lined, and 1.5sdotted lined.

FIG. 4. Variances2 sEi polarizationd versus cluster sizeNL for
different degrees of disorder:Q=0.2 ssolid lined, 0.4 sdashed lined,
and 1.5sdotted lined.

FIG. 5. Ei polarization conductance variances2 versusQ for
NL=15 ssolid curved and forNL=40 sdashed curved.

FIG. 6. sad Average conductancekgl for Hi polarization versus
cluster sizeNL for different degrees of disorder:Q=0.2 ssolid lined,
0.4 sdashed lined, 1.5 sdotted lined. The inset showskgl vs the
number of realizationsN for NL=40 smiddle curved, 41 stop curved,
and 42sbottom curved. sbd Average conductancekgl versusNL for
Q=0 sdashed curved and 0.2ssolid curved.
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For weak and moderate disorderse.g.,Q=0.2,0.4d, however,
the transition to the linear regime requires in excess ofNL
=70 layers.

Figure 7 shows the variance of the conductance forHi

polarization as a function ofNL and reveals that, for weak
and moderate disordersQ=0.2,0.4d, it depends neither on
the length of the stack nor on the disorder. For strong disor-
der sQ=1.5d, the variance decreases in a manner similar to
that for Ei polarization.

For weak disorder, the calculations for Figs. 3–7, based on
a rigorous theory that can handle any range of conductivity
or disorder, reveal a substantial plateau in the conductance
variance forHi polarization, and weak dependence on stack
length in the case ofEi polarization, with a “plateau” which
is flat to within 2% occurring for stacks of 60–70 layers,
prior to the onset of localization. It is interesting to observe
that the variance, where it is essentially constant, shares the
same value ofs2<0.11, even when the average conductance
kgl&1, i.e., close to the localization regime according to the

Thouless condition. Up until now, however, such calcula-
tions have been performed using either simplified models or
approximate methods such as random matrix theory
which, for the electronic casef24g, predicts a variance of
s2=2/15=0.13 sb=1d, a value slightly larger than our esti-
mate for the photonic case. Implicit in the application of
random matrix theory to calculations in the UCF regime is
an assumption of diffusive propagation that is normally as-
sociated withg.1. It is known, however, that the lower
bound of the conductance required to observe UCF’s lies at
the transition from diffusive to localized propagationf24,25g
which, in Sec. III B, we show to occur atg<0.5. The results
in Fig. 7, which show the presence of UCF’s forHi polar-
ization, and also those of Fig. 4sfor Ei polarizationd for
values ofg,1, are thus consistent with diffusive propaga-
tion extending down to this transition. Finally, we note that
the similarity between the computed variance for the photo-
nic ss2<0.11d and electronicss2<0.13d cases is not sur-
prising since, in two dimensions, the wave propagation equa-
tion, in either case, is the Helmholtz equation.

Furthermore, for weak disordersQ=0.2d and appropri-
ately long stacks, we observe that the variance forEi polar-
ization sFig. 4d, where it is essentially constant, and forHi

polarizationsFig. 7d in the UCF regime has a common value
of s2<0.11. Note that to observe this property, the stacks
have to be sufficiently longsNL.60d to stabilize the vari-
ance at this value, but not long enough for localization to
occur. In Fig. 7 we note two strong signatures of UCF’s—the
coincidence of the results fors2 for weak and moderate dis-
order, and the insensitivity of this quantity to system size.
The onset of the region where UCF’s are evident is forNL
<15, kgl<2 sFig. 6d.

B. Conductance distributions

In this section we consider the conductance distribution
psgd for both polarizations, and for the three propagation
regimes: diffusiveskgl.1d, transitionskgl<1d and localiza-

FIG. 8. Conductance distributionpsgd in the
diffusive regime sNL=10,Q=0.4,kgl=1.7d, sad
and the distribution of its logarithmpsln gd in the
localization regimesbd for Ei polarization sNL

=81,Q=0.4,kgl=0.029d. Graphsscd sNL=10,Q
=1.5,kgl=2.15d and sdd sNL=10,Q=1.5,kgl
=0.1d are similar tosad andsbd, but for Hi polar-
ization. The fitted line is a Gaussian distribution.
Fitting was done by usingkgl and s calculated
from the sample forsad andscd, andkln gl ands
for sbd and sdd.

FIG. 7. Hi polarization variances2 vs NL for different degrees
of disorder:Q=0.2 ssolid lined, 0.4 sdashed lined, and 1.5sdotted
lined and forHi polarization.
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tion skgl,1d. For the examples in Figs. 3 and 4, forEi

polarization, weak disordersQ=0.2d, and a sufficiently long
stacksNL=81d, the ensemble means and standard deviations
are, respectively,kgl<0.45 ands<0.35. ForHi polarization
and the same parameter values,kgl<0.87 and s<0.32.
Given the sizes of these standard deviations compared to the
means, the first two moments may be insufficient to charac-
terize the full conductance distributions.

As shown in Figs. 8sad and 8scd for Ei and Hi polariza-
tions, respectively, the conductance distribution in the diffu-
sive regime is well approximated by a Gaussian distribution

psgd =
1

Î2ps2
expF− sg − kgld2

2s2 G . s3d

We note that this is an approximation since the Gaussian
distribution is defined on an infinite interval while the con-
ductance is defined on a semi-infinite intervalsgù0d. In
Figs. 8sbd sEl polarizationd and Fig. 8sdd sHi polarizationd,
we show the distribution of the logarithm of the conductance
psln gd in the localized regime and observe that it is well
approximated by a normal distribution for most of the do-
main. Thus in the localization regimeg is log-normally dis-
tributed for both polarizations—a result that accords with its
electronic counterpart. The exception to this is a sharp drop
around lng=0. This drop is larger forHi polarization than
for Ei polarization, since the value ofkgl is closer to the
transition to Anderson localization forHi polarizationskgl
=0.1d than forEi polarizationskgl=0.029d. We expect a re-
duction of this drop when the number of layers in the stack is
increased leading to a decrease ofkgl. Again these results are
similar to those observed for electronsf5g.

We turn now to the probability distribution for the transi-
tion regime. Previously, nonanalytic behavior ofpsgd near
kgl=1 was reported for electronsf9g. In Fig. 9, which dis-

plays the distributionspsgd for average conductance values
of kgl=0.98 and 0.48, respectively, we see no evidence of
nonanalytic behavior forkgl=0.98 fFig. 9sadg in the vicinity
of g<1, but there the possibility exists of nonanalytic behav-
ior for kgl=0.48 fFig. 9sbdg, associated with the different
slopes of the distribution on either side ofg<1. The behav-
ior for Hi polarization in Fig. 10 is strikingly similar to that
for Ei polarization.

We note that the probability density distribution at the
transition in Figs. 9 and 10 is strikingly similar to that re-
ported for the electronic casef5g. In both the electronic and
photonic cases, the transfer matrices are symplecticsRefs.
f5,26g, respectivelyd and accordingly, in the spirit of random
matrix theory, it is conceivable that their eigenvalue distribu-
tions, and the concomitant conductance probability distribu-
tions, may be similar.

To investigate in more detail the behavior ofpsgd near the
transitionkgl=1, we present the logarithmic probability dis-
tribution in Fig. 11. The probability distributionpsln gd has
been calculated, assuming the absence of time reversal sym-
metry, by Muttalibet al. f9g. They derived

psln gd <Îx sinh 2x

1 − g
e−Gx2

for g , 1, s4d

psln gd < Î2ge−asg − 1d2 for g ù 1, s5d

wherex=cosh−1s1/Îgd andG=j /NL. Herej is the localiza-
tion length anda is a function ofG f9g. Neither expression
s4d nor s5d applies directly to this case which does exhibit
time reversal symmetry. Nevertheless we have attempted a fit
of our resultssFig. 11d with these approximate analytical
resultsf9g, since there are no known equivalents that apply to
systems for samples with bulk defects with time reversal
symmetry. TakingG to be a parameter chosen to optimize the
fit, we obtainG<0.85, a value somewhat different fromG
=j /L<0.47 derived using our values for the localization
length j and stack lengthNL. Similarly for Hi polarization,
the best fit to the data was obtained withG<0.85 while the
model gaveG=j /L<0.76. For both polarizations, the pa-
rametera<14. The presence of the logarithm function in
Eqs.s4d and s5d provides evidence of a possible asymmetry
in the slopes of the distribution to the left and to the right of
g<1. While this has been referred to in the literaturef9g, it
should be regarded as a preliminary result in the context of
our work. This is because the tails of the distributions are not
sufficiently well characterized statistically, with the loga-
rithm function exacerbating the problems by placing the un-

FIG. 9. Conductance distributionpsgd in the transition regime
for Ei polarization.sad kgl=0.98,Q=0.4, NL=14; sbd kgl=0.48 Q
=0.4, NL=24.

FIG. 10. Conductance distributionpsgd at
kgl=1.01, Q=1.5, NL=20 sad and kgl=0.48 Q
=1.5, NL=30 sbd for Hi polarization.
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resolved tails into the same bin. It is therefore possible that
this apparent nonanalytic behavior might be a numerical ar-
tifact.

IV. CONCLUSION

In conclusion, we have calculated, using a high accuracy
numerical method, the averaged conductance of a disordered,
two-dimensional photonic crystalscomprising circular cylin-
dersd for weak, moderate, and strong disorder. Of critical
importance in these calculations is the inclusion of suffi-
ciently many evanescent plane wave terms to ensure a well
converged result. Substantial discrepancies can arise if only
the propagating channels are included in the calculations.

Universal conductance fluctuations for photons have been
explicitly demonstrated forHi polarization in the case of
weak and intermediate disorder. ForEi sTMd polarization,
we have shown that the conductance variance is independent
of sample size but is a strong function of disorder, with con-
stant conductance fluctuations observed only in a very nar-
row region of disorder. Furthermore, where theEi conduc-
tance variance is essentially constant, its value is identical to

that forHi polarization in the UCF region, with a value only
slightly lower than the result predicted by random matrix
theory forb=1.

We have also shown that the conductance distributions are
insensitive to polarization and show some indication of
nonanalytic behavior. The distribution of the conductance at
the transition to Anderson localization displays remarkable
similarity for the two polarizationssFig. 11d. We also ob-
serve thatkgl is more sensitive to the degree of disorder for
Ei polarization than forHi polarization. These findings merit
further investigation, aimed at clarifying the essential simi-
larities and differences between the behavior of photons and
electrons in materials that have moderate to strong disorder.
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