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Conductance of photons in disordered photonic crystals
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The conductance of photons in two-dimensional disordered photonic crystals is calculated using an exact
multipole—plane wave method that includes all multiple scattering processes. Conductance fluctuations, the
universal nature of which has been established for electrons in the diffusive regime, are studied for photons, in
both principal polarizations and for varying disorder. Our simulations show that universal conductance fluc-
tuations can be observed H, (TE) polarization for weak and intermediate disorder while, Er(TM)
polarization, we show that the conductance variance is essentially independent of sample size but strongly
dependent on disorder. The probability distribution of the conductance is also calculated in the diffusive and
localized regimes, and also at their transition, for which the distributions for both polarizations are seen to be

very similar.
DOI: 10.1103/PhysReVvE.71.036623 PACS nun®er42.25.Dd, 42.25.Fx
I. INTRODUCTION Diagrammatic techniquelsl,10] have provided essential

) ) ~insight into the contribution of different terms of the inten-

The discovery of universal conductance fluctuationssjty correlation function for weak disorder. However, the ap-
(UCF’s) of electrons[1], in which the variance of the con- pjicability of such expansions to strong disorder is not clear.
ductanceg does not depend on the size or the degree Ofor this reason, a nonperturbative rigorous method of calcu-
disorder of the mesoscopic conductors, has led to considefation that takes into account all scattering events is needed.
able researchi2] in order to understand the nature of suchTg gate. however, none of the models for conductance cal-
anomalously large fluctuations. The scaling theory of Anderyations(for dimensionsd= 2) with bulk defects takes into
son localization assumes that the conductagds deter-  account all multiple scattering events for photons, and nor do
mined by its behavior for a system of a given size, with thegyisting models incorporate polarization dependence. It is
conductance for systems of any other size being obtaineghe purpose of this paper to address these deficiencies and to
through a scaling functiof8]. Since scaling theory is based present calculations for conductance fluctuations and the as-
on the scaling properties of the averaged conductdgke gociated probability distributions based on an analytically
the discovery of UCF's initiated a wide ranging discussionrigorous method that takes into account all scattering events.
about the validity of scaling theory itself. Indeed, it has beenwhile the modeling of noninteracting photons differs from
suggested that the scaling theory needs to be reformulated {Rat of electrons, most of the electronic models neglect
terms of conductance distribution¥g) [4]. At this time,  electron-electron interactions. Accordingly, the results ob-
however, no such theory exists. tained for photons may also be relevant to electrons.

The conductance distribution for the electronic case was We investigate the conductance fluctuations of photons
calculated numerically5,6] for both insulating and metallic and their distribution for two-dimensional disordered photo-
regimes, and also at the mobility edfg8]. Subsequently, nic crystals consisting of high index cylinders arranged in air
nonanalytic behavior op(g) was reported at the crossover in a doubly periodic fashion and with their axes parallel to
point ({g)= 1) [9] for systems without time reversal symme- each other. We study their behavior for both principal
try. Despite substantial research, however, the characterizgolarizations—when the electric fieldE,) or the magnetic
tion of the conductance distribution remains incomplete.  field (H,) is aligned with the cylinder axes. Our calculations

Originally developed to describe the transport propertiesare based on the exact method of multipole expansions and
of electrons in disordered wires, the concept of conductancggorously include all scattering events. They combine both a
can also be applied to photofi$0]. Calculations ofp(g)  microscopic approachl] in which the multiply scattered
have been undertaken using a modal approach for surfadield is calculated exactly for single layers, and a macro-
corrugated waveguidgd1,12 while the distribution of the scopic approachl?] in which these layers are stacked using
total transmittance has been investigated in the diffusive apexact recurrence relations. We introduce disorder through
proximation[13], using random matrix theorjl4], and ex- randomization of the cylinder refractive indices. We then cal-
perimentally[15]. In the diffusive regime(g)>1) [13], the  culate the conductance of the bulk, disordered photonic crys-
distribution of the total transmittance is approximately tal, investigating the effects of disorder and sample size on
Gaussian, while in the strong scattering regime, the theoryhe conductance, its fluctuations, and its distribution in the
[13,14] can be modified to give good agreement with experi-diffusive regime({g)>1), in the localized regimé(g)<1),
ment[16]. and at the transition regio{g) = 1).
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by the propagating diffracted orders can be computed from
the square magnitude of the matrix elements, a@l?. We
assume, for these calculations, that each grating layer is up-
down symmetric and thus its action, for incidence from ei-
x ther above or below, can be characterized by just the two
‘h matricesr, andt,. Finally, the scattering matrices of the in-
------------------------------- dividual grating layers are then coupled using recurrence re-
00O o0 00O e lations to yield the transmissiofT) and reflectionR) scat-
P R LT T tering matrices for a slab df, layers[18]. Accordingly, the
: : total transmitted flux through the stack, due to a unit ampli-
tude plane wave field incident in chanmgican be calculated
from gq:EpEQp|qu|2, with the summation taken over the set

77777777777777777777777777777777777777777 of all propagating channel@,,
T The dimensionless conductance of the sample is given by

the generalized two-terminal Landauer formi18] for mul-

FIG. 1. Diffraction geometry displaying a supercell of a random tichannel propagation by Summing the aggre_ga_te transmit-
stack upon which is incident a single plane wave, giving rise tol@NC€gq over each of the possible propagating incident chan-

reflectedR and diffractedT plane wave orders. nelsg. That is,
Il. COMPUTATIONAL METHOD 9= > gg= X [Tp2=TrTTi =TT, (1)
quq p,qup

We consider a two-dimensional, disordered photonic crys-

tal, each layer of which is a cylinder diffraction grating with i, \vhich Tr denotes the matrix trace, summed over only the
a supercell periodically replicated in thledirection(see Fig. propagating channelse., orders withy, real. The matrices
1). The supercell of lengtb comprises a set dfi; infinitely g 4ngT are infinite in dimension and must be truncated in
long cylinders of radi; and refractive indices;, placed i 5ny humerical implementation, with the truncation order de-
air with centers located at=c;. The properties of each grat- (ermined by various convergence studies. We retain plane
ing layer are then computed rigorously using a multipole, e orders[-N,,N,], ensuring that this set includes all
method from which plane wave scattering matrices that Char'ropagating channels, and as many evanescent channels as
acterize the action an_d interaction of each g_rating layer ar re required for conve’rgence to be achieved. We chiipte
calculateq[18]. LS f|e|d§ around eac;h cylinder areé €x- phe sufficiently large in order to give five significant figures of
pressed in terms of multipole expansions, and we includ@gq,acy or better, for the elements of the reflection and
sufficient terms to have gooq accura@e part in 18, or transmission matrices. The conductance is actually computed
better, for energy calculatiopg the solution of the scatter- by summing the square magnitud@s,? associated with all
ing problem for a given grating layer. The quasiperiodic re'propagating input and output chann?—:‘Is as in €
lationship petween the figlds for cylind_ers n one period cell Equation(1), the two-terminal Landauer formula for elec-
and those_ in other cells is ensured using lattice sums, calcyz,;c conductance, is derived assuming that the same leads
lated to high a_ccuracﬁ/lS]. L L are used to drive the current and to carry out the measure-
The scattering action of an individual grating iS param-pe s There is also a four-terminal form of the Landauer
etrized by its perio®, and the wavelength=2m/k (infree  ¢,.10,3 [20], in which separate leads are used for the input
spacéa and a_ngle (.)f mmde_ncéo of an incident pla_ne WaV€ and output measurements. In the case of photon conduc-
field. The diffraction grating equation then def'!"es a S€tance, the corresponding leads or terminals would be repre-
quence of channelp! CO”.‘mor."V referred_ to as d|ffract|on sented, respectively, by the light source and the detector that
orders, the propagation directio(#,) of which are given by  ;qjects the total transmitted energy. In order to calculate the
sin 6= ap/k where ap=ksin 6o+ 2mp/D=ksin 6,. The cor-  y4t0n conductance one needs to measure the full transmit-
responding  direction cosine terms are given by @&pS ance for each incident “energetic” angler channel and
=xp/k where x,=\k*-a with Re(x,)+Im(x;)>0. Thus  then sum(or integrat¢ these transmittances over every pos-
there are a finite number of propagating channels for whickiple incident channel. This experimental configuration
Im x,=0 and an infinite number of evanescent channels fo{yould correspond to the two-terminal measurements in the
which Imy,>0. In the general scattering problem that we glectronic case. Here, we are concerned with a disordered
consider, each of the grating orders can represent both aitystal for which a physical experiment requires an extended
input channel and an output channel. The action of the gratyyt finite sample. The full simulation of this, however, is
ing (1) can be characterized by reflection) and transmis-  peyond the capacity of current computers and so the model-
sion (t)) scattering matrices, the elements of which B;Pg ing is usually undertaken for a truncated structure with peri-
andt"). In this nomenclature, the tertf)’ refers to the field odic boundary conditions, modeled using a supercell. The
amplitude transmitted into an output c?hanpe‘lwith direc-  structure that we model is thus a diffraction grating with a
tion sinea,/k) from a unit amplitude input in channgl For  sufficiently large period to allow the diffraction orders to
simplicity, we exploit the treatment in RgfL8] which nor-  approximate the continuum of directions along which the
malizes all field amplitudes so that the energy fluxes carriegcattering field is distributed.
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0.1¢ E FIG. 2. Conductancg versus the number of
I layersN, for a single realization an®@=0.4, A
9 I =2.21d, and E; polarization. Solid line, evanes-
0.01F ) E cent coupling included(N;=50); dashed line,
| only propagating orders include@,=9). Inset:
0.001 | ' ] ] transmittance versus w_avelen_gth fqr normal inci-
T o dence on the stack with 41 identical layef3,
I YA =0. The solid line is folN;,=21 cylinders per unit
0.0001 | i cell with the inclusion of the evanescent waves,
I N;=50, while the dashed line is the same calcu-
L 5 lation without the evanescent fieltd,=9.
0.00001 | 1

| | Il | 1 1 | 1
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While any of the parameters, a;, andn; can be random- nescent field is important in accurately characterizing the
ized, the results here are for random refractive indiggs conductance. Note that in the localized regifges 1), the
uniformly distributed in the intervgln-Q,n+Q], whereQ inclusion of evanescent plane wave terms is vital for the
is the strength of the disorder. In this calculation we takeaccurate characterization of the transport.

N.=21. The calculations are undertaken with the family of

plane waves associated with a normal incidence configura- . RESULTS

tion (6,=0), with either the electric field aligned with the

cylinder axes(E, or TM polarized or the magnetic field A. Average of conductance and its fluctuations
aligned with the cylinder axesH, or TE polarized We now turn to the study of the average conductafgse

Throughout, we model a square lattice with lattice constangq jts fluctuations and note that for electrons, in the case of

d, and cylinders of fixed normalized radiag/d=0.3 and  \eak disorder, the variance of the conductance
choosen=3. The wavelength is\=2.21d, located in the

passband between the first two gaps of the associated regular o?=(g?) - (g)? = const, (2)
photonic crystal. There eire 19 propagating _orders for thes\(lavhich is independent of both the degree of disorder and the
parameters and we tak§¢=50. Unless otherwise stated, av-

A ! size of the sample—the universal conductance fluctuations
erages were calculated over 4900 reallz_at|ons, suff|C|_e nt Ff)l]. We begin by investigating this phenomenon for photons
yield Qnsemble means stable to approximately two Slgnlfl'in the transition from weak to strong disorder for both polar-
cant figures. izations

V.Ve. begin by demonstrating the Importance Of including First.in Fig. 3, we show the dependence of the average
sufficient evanescent plane wave terms in the field expan- : C

sions in order to ensure a well converged solution. In theconductancég) on the number of layerty, for weak, mod-

- : - : te, and strong disord€} in the case ofg; polarization.
inset of Fig. 2 we plot the transmission of a stack with % . o 1 .
=41 identical layers witiN.=21 identical cylinders per unit '€ maximum stack length i8l =81 and thus, for this
cell and N;=50, versus wavelengtisolid line). With N length andN=21, the_re are .1701 cylmders in each sam.ple.
=21, the calculation includes some 1022N,+1) plane Three wave propagation regimes, which are more prominent

. . ' for strong disordefdotted line in Fig. 3, are apparent. The
waves, only 19(i.e., pe Q,={-9,...,9) of which are regions where the regimes occur depend on the degree of the

propagating(i.e., Imx,=0), with the remainder evanescent e O o )
(i.e., Imy,>0). The dashed line repeats the calculation, butdlsorderQ. The diffusive ((g)>1) and transition regimes

this time excluding all evanescent terms and including onl)f(g)zl) oceur, respectively, fol, =10 a”‘?' 16s NLSZ,O

the 19 propagating waves. The clear difference between tH@Yers, while for longer stack, = 20) the linear behavior
calculations demonstrates the importance of including suffiimplying exponential decay of thig)) points to the onset of
ciently many evanescent terms in the calculation to ensure Anderson localization. For strong disord€=1.59), the tran-
well converged result. In the main part of Fig. 2 we show thesition to Anderson localization requires fewer layers than for
conductance as a function of stack lendth for a single ~ weak disorder. According to the Thouless criter[@1], the
realization with the inclusion of sufficient evanescent termsonset of localization occurs wheig)~ 1, while for(g)>1,

to ensure convergendsolid line), and without evanescent waves are delocalized. In Fig. 3, we observe transitions to
order terms(dashed ling From this, it is clear that the eva- the linear regime(i.e., localization commencing at(g)
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0.001 E 0.05 0.2 0.4 0.6 0.8 1
Q
000 0 30 40 80 60 70 B FIG. 5. E, polarizati d iancé f
0 10 20 30 40 50 60 70 80 90 . 5. E; polarization conductance varianeg versusQ for
N N_ =15 (solid curve and forN, =40 (dashed curve

FIG. 3. AverageE, polarization conductanc@y) versus size of
the clusteN, for different degrees of disorde@=0.2 (solid line),
0.4 (dashed ling and 1.5(dotted ling.

the inset of Fig. 6) the result of a convergence study, show-
ing the averagég) versus the number of realizations. Thus
(g) is well converged, with the results accurate to two sig-
nificant figures for 4000 or more realizations. To deduce the
physical origin of these oscillations, we considered the varia-
tion of (g) with stack length(N,) for both an ordered stack
(i.e., Q=0) and a weakly disordered sta¢=0.2), shown,
respectively, as the upper and lower curves of Fi).6
There is a clear correspondence between the maxima and
. ) I, . L minima of these curves and we thus conclude that the oscil-
variance is constant to within 2%, with localization appear|,iions of(g) in Fig. &(a) for weak disorder are remnants of

ing for stacks_exqeedl_ngle_?S. For str_onger disorder, the_ Fabry-Pérot resonances associated with reflections from the
onset of localization, in which the variance decreases W'tqront and back interfaces of the sample

stack length, occu_rs_earlléme., for shorter sta}ck lengths- . We also comparég) for ordered and very weakly disor-
results that are similar to those observed in the electrom% d stacké0=0.05 for E. polarizati d ob d th
case[22]. In Fig. 5 we see that the varianeg depends dered stack&Q=0.09 for E, polarization and observed the

strongly on the disorde®, with approximately constant con- same resonances. The fact that oscillatory behavior is evident

ductance fluctuations being observed only in a narrow rang@n!Y for very weakly disordered stacks & polarization

of disorder, for 0.15 Q< 0.2 andN, =15 (top curve, while  Suggests thalg) is less sensitive to disorder fét; polariza-

for N_ =40 the variance of the conductance decreases mond©n than for E, polarization. This may be interpreted in

tonically for Q> 0.1 (bottom curve. terms of the stronger scattering by dielectric objects in air
Figure a) is similar to Fig. 3, but this time fok, polar-  that is observed foE, polarization than foH, polarization

ization. Small oscillations ifg), with the number of layers [23] and which is related to the absence of a full band gap in

N,, are now apparent. To determine their origin, we show inHi polarization for a photonic crystal composed of dielectric
inclusions.

10 - The transition to the lineaflocalization regime of Fig.
6(a) for H, polarization for strong disordéf.e., Q=1.5) oc-
curs for stack length$l, =50 (corresponding tdg)=<0.3).

~1.5,0.4,0.3, forQ=0.2,0.4,1.5 respectively—results that
are not inconsistent with the Thouless criterion.

Figure 4 shows the variande?) of the conductance as a
function of the number of layers. For weak disord€
=0.2), o2 depends only weakly on the number of layers for
N, =30 (top curve, while for stack lengths 6& N, <70 the

100 10
ol@ ] "l
1Ml 8

T 10 T g |

o o] - 14 sl

0 2000 4000
N

0.001 | ] 1.0 e 4

0.0001 0 20 40 60 80 40 45 50 55 60

L

0 10 20 30 40 50 60 70 80 90 FIG. 6. () Average conductancg) for H, polarization versus
N cluster size\, for different degrees of disorde@=0.2 (solid line),
0.4 (dashed ling 1.5 (dotted ling. The inset showsgg) vs the
FIG. 4. Varianceo? (E, polarization versus cluster sizhl, for number of realizationsl for N, =40 (middle curve, 41 (top curve,
different degrees of disorde@=0.2 (solid line), 0.4 (dashed ling and 42(bottom curve. (b) Average conductancéy) versusN, for
and 1.5(dotted ling. Q=0 (dashed curveand 0.2(solid curve.
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10 ' ' ' ' - ' - ' Thouless condition. Up until now, however, such calcula-

tions have been performed using either simplified models or
2 approximate methods such as random matrix theory
which, for the electronic casg4], predicts a variance of
1 0?=2/15=0.13(8=1), a value slightly larger than our esti-
\ mate for the photonic case. Implicit in the application of
random matrix theory to calculations in the UCF regime is
B an assumption of diffusive propagation that is normally as-
1 sociated withg>1. It is known, however, that the lower
bound of the conductance required to observe UCF’s lies at
the transition from diffusive to localized propagatii@#,25
which, in Sec. Il B, we show to occur gt=0.5. The results
in Fig. 7, which show the presence of UCF's fidy polar-
ization, and also those of Fig. &or E; polarization for
values ofg<<1, are thus consistent with diffusive propaga-
tion extending down to this transition. Finally, we note that
the similarity between the computed variance for the photo-
nic (6?~0.11) and electronid(c®?~0.13 cases is not sur-
prising since, in two dimensions, the wave propagation equa-
tion, in either case, is the Helmholtz equation.
Furthermore, for weak disord€iQ=0.2) and appropri-

e S NP N S

0.1

0.01 1 1 1 1
50 60 70 80
N

0 10 20 30 40 90
FIG. 7. H, polarization variancer vs N, for different degrees
of disorder:Q=0.2 (solid line), 0.4 (dashed ling and 1.5(dotted

line) and forH, polarization.

For weak and moderate disorderg.,Q=0.2,0.4, however,
the transition to the linear regime requires in excesiof
=70 layers. ately long stacks, we observe that the varianceSjopolar-
Figure 7 shows the variance of the conductanceHpr ization (Fig. 4), where it is essentially constant, and tdy
polarization as a function dfl, and reveals that, for weak polarization(Fig. 7) in the UCF regime has a common value
and moderate disorddQ=0.2,0.4, it depends neither on of 0?~0.11. Note that to observe this property, the stacks
the length of the stack nor on the disorder. For strong disorhave to be sufficiently longN_>60) to stabilize the vari-
der (Q=1.5), the variance decreases in a manner similar t@nce at this value, but not long enough for localization to
that for E, polarization. occur. In Fig. 7 we note two strong signatures of UCF's—the
For weak disorder, the calculations for Figs. 3-7, based ogoincidence of the results far for weak and moderate dis-
a rigorous theory that can handle any range of conductivitprder, and the insensitivity of this quantity to system size.
or disorder, reveal a substantial plateau in the conductancEhe onset of the region where UCF's are evident isNgr
variance forH, polarization, and weak dependence on stack= 15, (9)=2 (Fig. 6).
length in the case dE; polarization, with a “plateau” which
is flat to within 2% occurring for stacks of 60-70 layers,
prior to the onset of localization. It is interesting to observe
that the variance, where it is essentially constant, shares the In this section we consider the conductance distribution
same value of?~0.11, even when the average conductancep(g) for both polarizations, and for the three propagation

B. Conductance distributions

(g)=1, i.e., close to the localization regime according to theregimes: diffusive{g)> 1), transition({(g) =~ 1) and localiza-

p(9) plin(g)]
0.6 (a) (b)
0.5 061;2
04 0.08
0.3 0.06 . .
02 : FIG. 8. Conductance distributiop(g) in the
0'1 0.04 diffusive regime (N, =10,Q=0.4(g)=1.7, (a)
' 0.02 and the distribution of its logarithm(In g) in the
1 5 3 4 BT 10 5 0 localization regime(b) for E; polarization (N_
o =81,0=0.4(g)=0.029. Graphs(c) (N, =10,Q
=15(g)=2.19 and (d) (N =10,Q=1.5(g)
=0.1) are similar to(a) and(b), but for H, polar-
0.15 ization. The fitted line is a Gaussian distribution.
' Fitting was done by usingg) and o calculated
0.10 from the sample fofa) and(c), and{In g) and o
for (b) and(d).
0.05

-10 -8

-6

-4
In(g)

-2

0
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p(9)
0.8 (@)

0.6
0.4
0.2

p(9)

b5 2 25
g ¢}

05 1 15 2

FIG. 9. Conductance distributiop(g) in the transition regime
for E; polarization.(a) (g)=0.98,Q=0.4, N =14; (b) (g)=0.48Q
=0.4,N, =24.

tion ((gy<1). For the examples in Figs. 3 and 4, f&f
polarization, weak disord€lQ=0.2), and a sufficiently long

stack(N, =81), the ensemble means and standard deviation

are, respectivelyg) =~ 0.45 ando= 0.35. ForH, polarization
and the same parameter valuég)~=0.87 and o=0.32.

PHYSICAL REVIEW E 71, 036623(2005

plays the distributiong(g) for average conductance values
of (g)=0.98 and 0.48, respectively, we see no evidence of
nonanalytic behavior fo¢g)=0.98[Fig. (a)] in the vicinity

of g=1, but there the possibility exists of nonanalytic behav-
ior for (g)=0.48 [Fig. Ab)], associated with the different
slopes of the distribution on either side @f 1. The behav-

ior for H, polarization in Fig. 10 is strikingly similar to that
for E; polarization.

We note that the probability density distribution at the
transition in Figs. 9 and 10 is strikingly similar to that re-
ported for the electronic cagé]. In both the electronic and
photonic cases, the transfer matrices are sympld&éfs.
[5,26], respectively and accordingly, in the spirit of random
matrix theory, it is conceivable that their eigenvalue distribu-
tions, and the concomitant conductance probability distribu-
fions, may be similar.

To investigate in more detail the behaviormify) near the
transition{(g)=1, we present the logarithmic probability dis-

Given the sizes of these standard deviations compared to thgpytion in Fig. 11. The probability distributiop(In g) has
means, the first two moments may be insufficient to characpeen calculated, assuming the absence of time reversal sym-

terize the full conductance distributions.
As shown in Figs. @) and &c) for E; andH, polariza-

tions, respectively, the conductance distribution in the diffu-
sive regime is well approximated by a Gaussian distribution

— (- 2
(9-(9) ] @

p(g) = g ex 202

We note that this is an approximation since the Gaussian
distribution is defined on an infinite interval while the con-

ductance is defined on a semi-infinite intergl=0). In
Figs. 8b) (E, polarization and Fig. &d) (H, polarization),

we show the distribution of the logarithm of the conductanc
p(Ing) in the localized regime and observe that it is well
approximated by a normal distribution for most of the do-

main. Thus in the localization regingeis log-normally dis-

tributed for both polarizations—a result that accords with it
electronic counterpart. The exception to this is a sharp dro

around Ing=0. This drop is larger foH, polarization than
for E; polarization, since the value df) is closer to the
transition to Anderson localization fdd; polarization ({g)

e

S_

metry, by Muttalibet al.[9]. They derived

inh
p(ing) = 4/ %e—n@ forg<1, (4)
p(ng) =~ \2ge9-Y* forg=1, (5)

wherex=cosh}(1/\g) and['=¢/N,. Here¢ is the localiza-
tion length anda is a function ofI" [9]. Neither expression
(4) nor (5) applies directly to this case which does exhibit
time reversal symmetry. Nevertheless we have attempted a fit
of our results(Fig. 11) with these approximate analytical
resultg 9], since there are no known equivalents that apply to
systems for samples with bulk defects with time reversal
symmetry. Takind" to be a parameter chosen to optimize the
fit, we obtainI’~0.85, a value somewhat different froth
=¢/L=0.47 derived using our values for the localization
Pength ¢ and stack lengtiN_. Similarly for H, polarization,
the best fit to the data was obtained with=0.85 while the
model gavel'=¢/L=~0.76. For both polarizations, the pa-
rametera=14. The presence of the logarithm function in

=0.1) than forE; polarization((g)=0.029. We expect a re- gqs. (4) and (5) provides evidence of a possible asymmetry
duction of this drop when the number of layers in the stack isn the slopes of the distribution to the left and to the right of
increased leading to a decreasé@f Again these results are g~1. While this has been referred to in the literat{®& it
similar to those observed for electrofis. should be regarded as a preliminary result in the context of
We turn now to the probability distribution for the transi- our work. This is because the tails of the distributions are not

tion regime. Previously, nonanalytic behavior pfg) near
(gy=1 was reported for electro9]. In Fig. 9, which dis-

p(9)
1.4

1.2
1.0
0.8
0.6
0.4
0.2

0.1

p(9)

1.0
0.8
0.6
0.4
0.2

sufficiently well characterized statistically, with the loga-
rithm function exacerbating the problems by placing the un-

(b)

FIG. 10. Conductance distributiop(g) at
(9)=1.01, Q=1.5, N, =20 (a) and (g)=0.48 Q
=1.5,N,_ =30 (b) for H; polarization.
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plin(g)] plin(g)]
031 () 05 ()
0.4 0.4 FIG. 11. Probability distribution for the loga-
03 0.3 rithm of the conductance(In g) at (g)=0.48 for
02 02 E, (@ and H, polarization (b). The fitting has

’ been done by using Eg&l) and(5) and the given
0.1 0.1 values of the parametefsanda.
5 4 3 2 -1 0 5 4 3 2 1 0
In(g) In(g)

resolved tails into the same bin. It is therefore possible thathat for H, polarization in the UCF region, with a value only
this apparent nonanalytic behavior might be a numerical arslightly lower than the result predicted by random matrix

tifact. theory for8=1.
We have also shown that the conductance distributions are
IV. CONCLUSION insensitive to polarization and show some indication of

] ) ] nonanalytic behavior. The distribution of the conductance at

In conclusion, we have calculated, using a high accuracyhe transition to Anderson localization displays remarkable
numerical method, the averaged conductance ofad|sordere§mi|arity for the two polarizationgFig. 11). We also ob-

two-dimensional photonic crystétomprising circular cylin-  serve thatg) is more sensitive to the degree of disorder for

f’efé for We‘_"‘k' moderate, aqd strlong di;order_. Of criticql E, polarization than foH, polarization. These findings merit
importance in these calculations is the inclusion of suffi-¢

. Erther investigation, aimed at clarifying the essential simi-
ciently many evanescent plane wave terms to ensure a wall jties and differences between the behavior of photons and

converged result. Substantial discrepancies can arise if Onlyjecirons in materials that have moderate to strong disorder.
the propagating channels are included in the calculations.

Universal conductance fluctuations for photons have been
explicitly demonstrated foH; polarization in the case of ACKNOWLEDGMENTS
weak and intermediate disorder. Fgf (TM) polarization,
we have shown that the conductance variance is independent The work was produced with the assistance of the Austra-
of sample size but is a strong function of disorder, with con-lian Research Council. We also acknowledge computing sup-
stant conductance fluctuations observed only in a very naport from the Australian Centre for Advanced Computing
row region of disorder. Furthermore, where tBeconduc- and Communicatioffac3 and the Australian Partnership for
tance variance is essentially constant, its value is identical tddvanced ComputindAPAC).
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